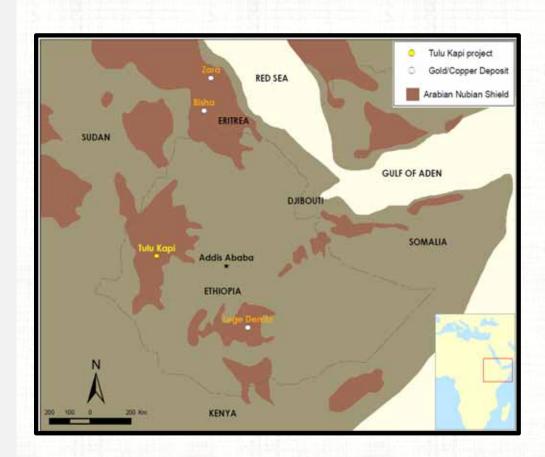


Disclaimer

The information contained in this document ("Presentation") has been prepared by KEFI Minerals plc (the "Company"). While the information contained herein has been prepared in good faith, neither the Company nor any of its shareholders, directors, officers, agents, employees or advisers give, have given or have authority to give, any representations or warranties (express or implied) as to, or in relation to, the accuracy, reliability or completeness of the information in this Presentation, or any revision thereof, or of any other written or oral information made or to be made available to any interested party or its advisers (all such information being referred to as "Information") and liability therefore is expressly disclaimed. Accordingly, neither the Company nor any of its shareholders, directors, officers, agents, employees or advisers take any responsibility for, or will accept any liability whether direct or indirect, express or implied, contractual, tortious, statutory or otherwise, in respect of, the accuracy or completeness of the Information or for any of the opinions contained herein or for any errors, omissions or misstatements or for any loss, howsoever arising, from the use of this Presentation.

This Presentation may contain forward-looking statements that involve substantial risks and uncertainties, and actual results and developments may differ materially from those expressed or implied by these statements. These forward-looking statements are statements regarding the Company's intentions, beliefs or current expectations concerning, among other things, the Company's results of operations, financial condition, prospects, growth, strategies and the industry in which the Company operates. By their nature, forward-looking statements involve risks and uncertainties because they relate to events and depend on circumstances that may or may not occur in the future. These forward-looking statements speak only as of the date of this Presentation and the Company does not undertake any obligation to publicly release any revisions to these forward-looking statements to reflect events or circumstances after the date of this Presentation.

This Presentation should not be considered as the giving of investment advice by the Company or any of its shareholders, directors, officers, agents, employees or advisers. Each party to whom this Presentation is made available must make its own independent assessment of the Company after making such investigations and taking such advice as may be deemed necessary.


Neither this Presentation nor any copy of it may be (a) taken or transmitted into Canada, Japan, the Republic of Ireland, the Republic of South Africa or the United States of America (each a "Restricted Territory"), their territories or possessions; (b) distributed to any U.S. person (as defined in Regulation S under the United States Securities Act of 1933 (as amended)) or (c) distributed to any individual outside a Restricted Territory who is a resident thereof in any such case for the purpose of offer for sale or solicitation or invitation to buy or subscribe any securities or in the context where its distribution may be construed as such offer, solicitation or invitation, in any such case except in compliance with any applicable exemption. The distribution of this document in or to persons subject to other jurisdictions may be restricted by law and persons into whose possession this document comes should inform themselves about, and observe, any such restrictions. Any failure to comply with these restrictions may constitute a violation of the laws of the relevant jurisdiction.

Note: All references to \$ within this presentation refer to US\$

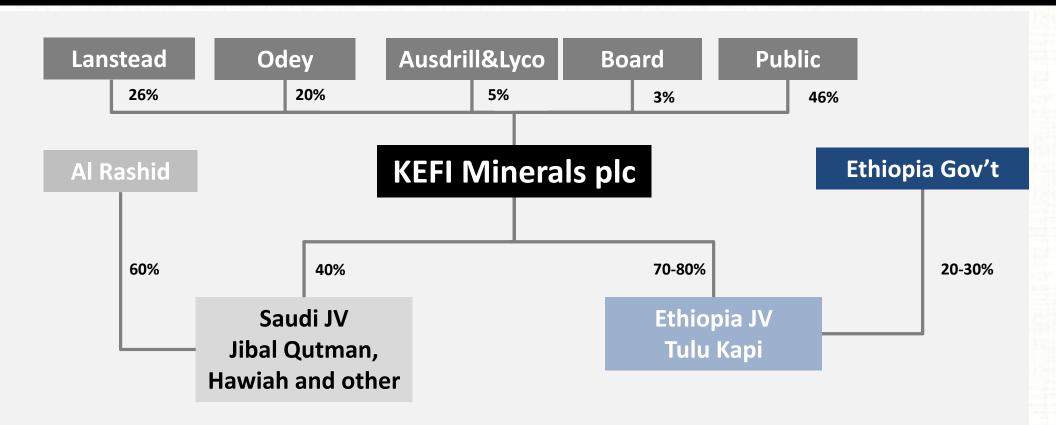
Outline of Presentation

- 1. Overview
- 2. Community
- 3. Mineral Resources
- 4. Ore Reserves and Mining
- 5. Metallurgy and Processing
- 6. Further Potential Tulu Kapi Deeps
- 7. Further Potential Tulu Kapi Near-Mine Exploration

Corporate overview

Summary

- Exploration and development company focussed on gold and copper in the highly prospective Arabian-Nubian Shield (ANS)
- Recent placing supports working capital for 12-18 months
- Selected preferred financing structure & syndicates for Tulu Kapi
- Targeting to commence Tulu Kapi construction in 2017 and open-pit gold production 2019
- Project pipeline includes:
 - Underground gold mine below Tulu Kapi open pit
 - Satellite deposits around Tulu Kapi mine
 - Oxide gold mine at Jibal Qutman in Saudi Arabia
 - Large VHMS base metal target at Hawiah in Saudi Arabia
 - Exploration prospects in ANS


Capital Structure ¹						
AIM code KEFI						
Share price - 12 mth	3.93p (low)/11.38p (high)					
Share price (27/3/2017)	4.72p					
Shares in issue	332 million					
Market cap	£16m (c. \$20m)					

Key shareholders					
Lanstead	26.0%				
Odey Asset Management	20.6%				
Ausdrill	5.0%				
Lycopodium (subject to EPC contract execution)	Intend to subscribe to \$2.5m equity upon signing EPC				

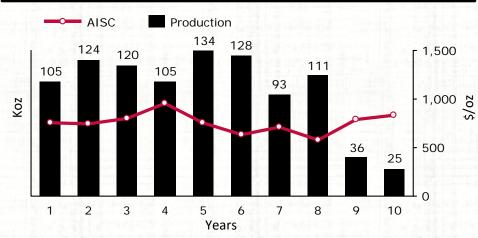
1) Data correct as of 25 April 2017

Strong shareholders and partners

KEFI's Status for Ethiopian Government:

- Tulu Kapi is fully permitted and ready for development
- Gov't has a 5% free-carry, a 7% royalty, committed a \$20M contribution to increase its project-level equity interest
- Development Bank of Ethiopia has confirmed intent to participate in the project debt

Tulu Kapi A financially robust project


The operation is strong financially

- Gold production = 115k oz p.a. (8 year LOM)
- Low AISC of < \$800/oz, (excl. finance charges)
- Underpinned by:
 - low strip ratio of 7.5:1; and
 - simple metallurgy (recovery ~93%)

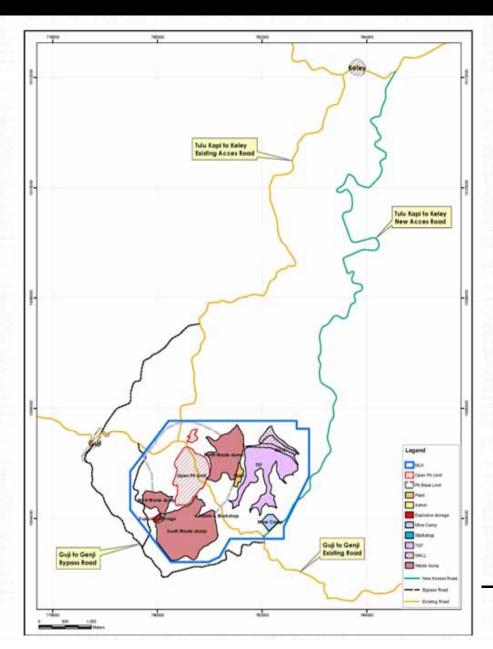
Resources and Reserves

	Tonnes (Mt)	Grade (g/t Au)	Cont. Au (Koz)
Probable Ore Reserves	15.4	2.12	1,050
Indicated Resources	18.8	2.67	1,620
Inferred Resources	1.4	2.40	100

Open pit production and AISC

Project economics

Gold Price	NPV@8% Open Pit+ Underground	NPV@8% Open Pit Only	IRR Open Pit Only
\$1,150/oz	\$74m	\$56m	37%
\$1,200/oz	\$100m	\$77m	47%
\$1,250/oz	\$126m	\$98m	56%
\$1,300/oz	\$151m	\$119m	65%
\$1,350/oz	\$178m	\$140m	72%

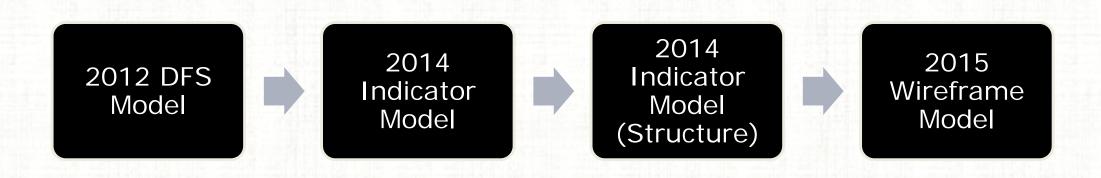


Tulu Kapi

- 1939: Italian Company mined the surface near Bedele Shear Zone
- 1969-1972: UNDP-Ethiopian Government conducted reconnaissance exploration
- 1996-1998: Tan-Range, Canadian Exploration Co conducted exploration
- 2005-2007: Golden Prospecting Mining Co Ltd (GPMC) exploration
- 2007-2009: Minerva Resources (JV- Palladex & GPMC) conducted exploration
- 2009: bought by Nyota
- 2009-2012 Nyota Maiden Resource continued the exploration, scoping and technical studies
- **2012:** completion of JORC compliant DFS
- 2013: KEFI acquired Tulu Kapi for £6M in December with \$50M historic expenditure
- 2014: KEFI has refined historic DFS with improved confidence and optimisation of parameters
- 2014: Resources and Reserves upgraded and signed-off
- 2015: DFS
- 2016: contracting
- **2017:** financing
- 2018: construction
- 2019: production

Location and Infrastructure

- Tulu Kapi is located in Western Ethiopia, in the Western Wellega Zone of the Oromia Region approximately 360 km due west of Addis Ababa
- The Project is accessible by main road from Addis Ababa, a distance of 520 km
- The project area is about 9 km south of the village of Keley, which is on the main road
- New roads to be built are an access road from Keley and bypass road on the southwest side of the Mining Licence.



- Well constrained geological model
- Extensive onsite exploration programmes
 - Well documented and verified technical databases
 - Significant drilling carried out under consultant supervision, physical samples kept on site
 - Solid exploration interpretation of collected data to support planned mine design
- Good potential to add resources and reserves on adjacent areas

Mineral Resource Estimate Background

- Geological assay database validated independently and signed off after final update
- 12 months spent updating, validating and refining:
 - Structural input
 - Estimation parameters
 - Interpolation methodology
- Resulted in Indicator model (JORC 2012 compliant) and confidence to wireframe mineralised lodes for final 2015 DFS Resource model

Mine Design, Schedule and Ore Reserves

- 2012 DFS schedule suggested sub 2.0g/t mill feed and a bulk mining approach
- 2015 DFS confirmed a 2.5g/t mill feed and a selective mining approach
- 2015 DFS Ore Reserve is JORC 2012 compliant
- Focus on:
 - **Design optimisation** (pit staging, geotech)
 - Mining method (Dilution- ore loss, equipment selection, blasting studies)
 - Cut off grade parameters (10 years high grade feed, 3 years low grade feed,)
 - Waste disposal optimisation (MWD)

- Significant detailed historic metallurgical testwork carried out by current consultant and 2015 DFS lead, SENET Pty Ltd
- 2012 processing plant design optimised from 2.0 Mtpa lower grade feed to 1.5 Mtpa higher grade feed significantly reduced capital cost
- No issues identified non-refractory ore amenable to standard CIL
- Off the shelf process plant procurement and design

Community - Scope of Social Performance

- 1. KEFI Social Performance Management System
- 2. External Engagement and Communications
- 3. Partnerships
- 4. Resettlement
 - Compensation
 - Infrastructure Development
 - Livelihood Restoration
- 5. Community Development
 - KEFI Foundation
- 6. Access to Business Supply Chain
 - Local procurement and business opportunities
 - Local employment and training
- 7. Managing Social Impacts
 - Cultural Heritage
 - Grievance Mechanism
 - Influx Mitigation

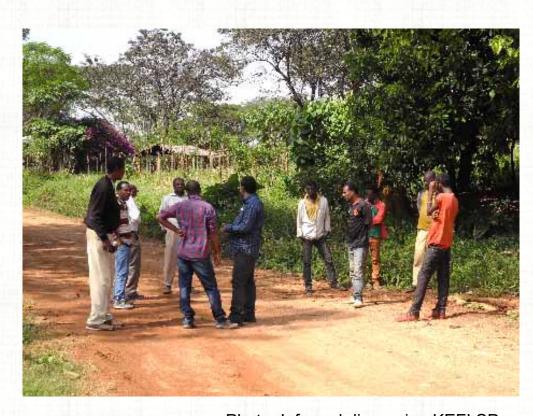


Photo: Informal discussion KEFI SP team and community members April 2016

A Long-Term Partnership, KEFI-Government-Community:

- Open communication and transparency, cooperative and collaborative engagement
- Government support and guidance to help facilitate and coordinate, activate formal communication platforms
- Engage community for inputs into program design and needs and to take on leadership roles for implementation
- Aim to be a valued neighbour to our nearby communities and maximise opportunities for long-term local development
- Contribute to sustainable development by working with affected communities, all levels of government and wider society to deliver sustainable local, regional and national benefit

Photo: KEFI Social Performance Team with Genji Woreda Administrators and potential Project financiers, April 2016

Background to community resettlement

- Location: Genji Woreda, West Wollega Zone, Oromia Region (roughly 520km from Addis Ababa)
- KEFI took over project in January 2014
- Mine has estimated life of 11-20 years
- Mining Licence issued by Ministry of Mines on 13 April 2015
- Resettlement required across Mining Licence Area of 698ha
- Small frivolous claim has been dealt with in courts
- Resettlement preparations ready for implementation H2-17

Strategic Framework for Resettlement

Ethiopian expropriation law

Features

- · Government-led
- Guides expropriation, valuation & compensation payment processes
- Provides for, but does not define, livelihood restoration

Key Proclamations

FEDERAL

- Ethiopian Constitution
- Proc No. 455-2005
 Expropriation of Land
- Proc No. 456-2005 Rural Land Administration
- Proc No. 678-2010 Mining Operations
- Reg No. 135-2007
 Payment of Compensation

STATE

 Oromo Proc No. 130-2007 Rural Land Use and Administration

KEFI Minerals

Resettlement and livelihood planning

STRATEGIC PRINCIPLES

- Adhere to Ethiopian law
- Work constructively with all levels of government
- Meet international performance standards
- Transparent
- Collaborative
- Consultative and Participatory
- Effective community & stakeholder engagement
- Sustainable Community Development

Overall Objective

Positive social and economic outcomes at local, regional and national levels

International land acquisition standards

Features

- · Proponent-led
- · Performance-based
- Resettlement cast as a development opportunity
- · Aim to improve livelihoods

IFC PS 5 Land Acquisition & Involuntary Resettlement

- · Reconciliation Action Plan
- Physical relocation of displaced persons
- Also address economic displacement
- Pay legal compensation
- Provision for economic assistance (training, job opportunities)
- Established baseline social and economic data
- Grievance Mechanism
- Vulnerable persons & women

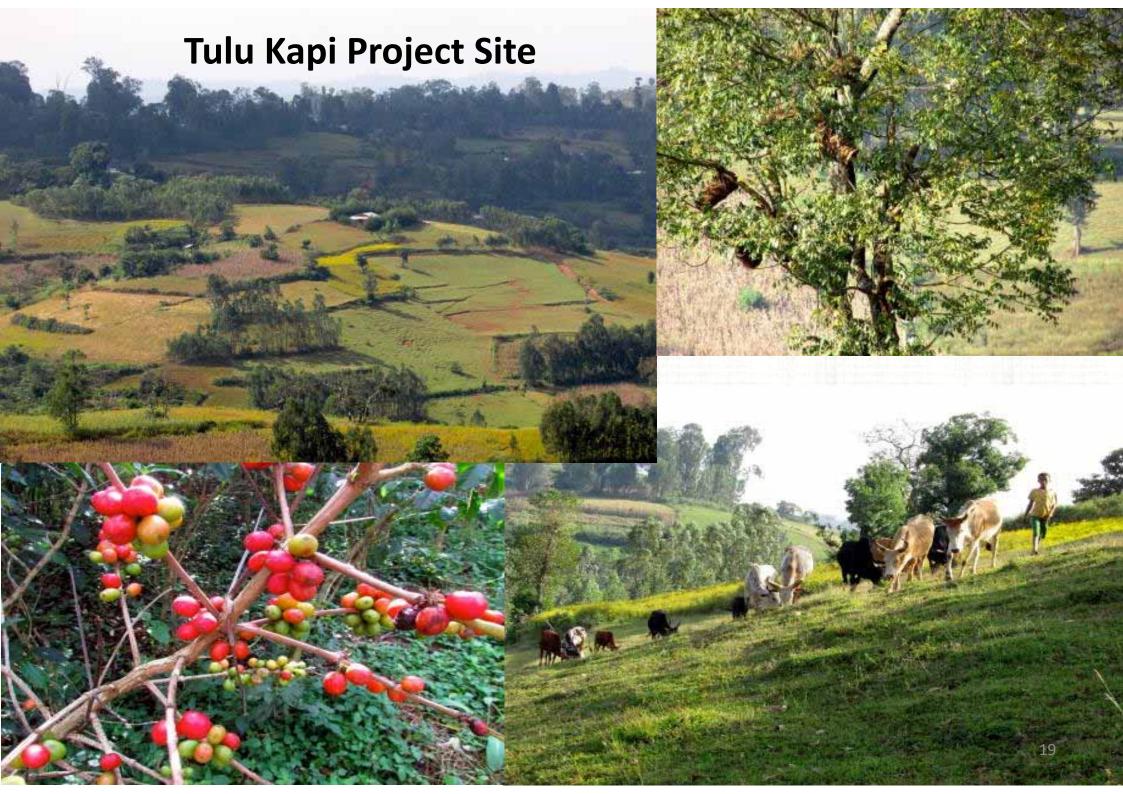
Key Stakeholder Identification

Government

- Federal
- Oromia Region
- West Wollega Zone
- Woreda local government level (four target Woredas)
- Kebele administration closely linked with local communities

Communities

- Project affected communities
- Special social groups including youth, women, and vulnerable people


Engagement

- Good communication and access to project information
- Common understanding on the project development, resettlement process, roles and responsibilities
- Cooperation of project affected people

Current context: Genji Woreda & Tulu Kapi area

- Major livelihood in the area is production and sales of coffee
- Food is self-sufficient; cereal crops, fruits, vegetables, livestock
- Schools, health clinics, all-weather roads, water collection points, local markets and government administrations are accessible within short walking distances
- Buildings constructed from locally sourced materials
- Households are usually 5-7 persons and male-headed, with the majority of the local population are dependents
- Demographic: Oromo, mostly Christian of various churches
- KEFI-Community consultations began Sept 2014

- Cultural heritage management of churches, cemeteries, household graves
- Three protestant churches in the mining area
- Initial consultations with churches leaders and respective synods
- Inventory of the graves have been made
- Graves relocation procedures
- Graves will be carefully relocated with the necessary ceremonials

Strategic framework for resettlement and livelihood restoration

Objective: to *improve* income-earning capacity and standard of living for the resettled families to establish self-sufficient and sustainable communities

- 1: compensation (replacement land for loss of land and assets, monetary for loss of livelihoods)
- 2: work with government to provide basic social infrastructure (shelter, health, education, agricultural support)
- 3: livelihood restoration (land-based & micro-enterprise development)

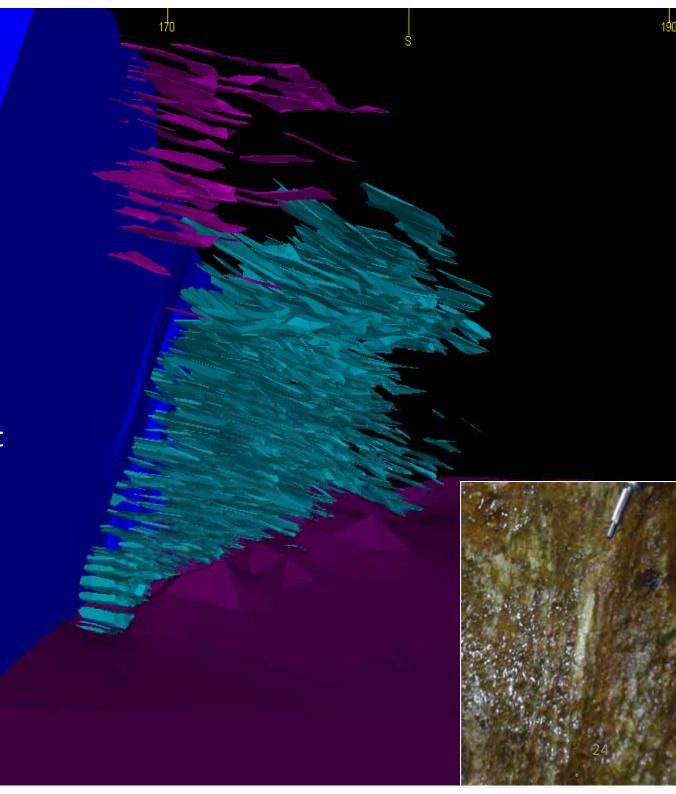
Livelihood Programs

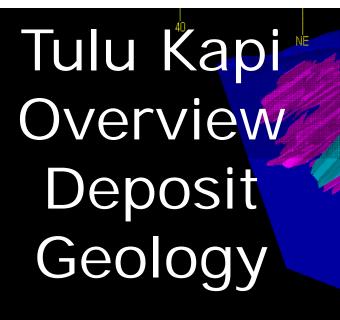
Financial capacity building and assistance:

- **Objective:** To improve knowledge and skills for compensation recipients to effectively utilise payment packages
- What? Training on basic banking orientation, personal financial management and financial literacy, effective compensation payment utilisation, small scale business and micro-finance
- Who? For all persons receiving any payment (either directly, as head of household, or indirectly as a member of a household)
- **How?** This training to be sustainable and participatory, with follow-up sessions in the immediate and long-term

A communicative and advisory platform:

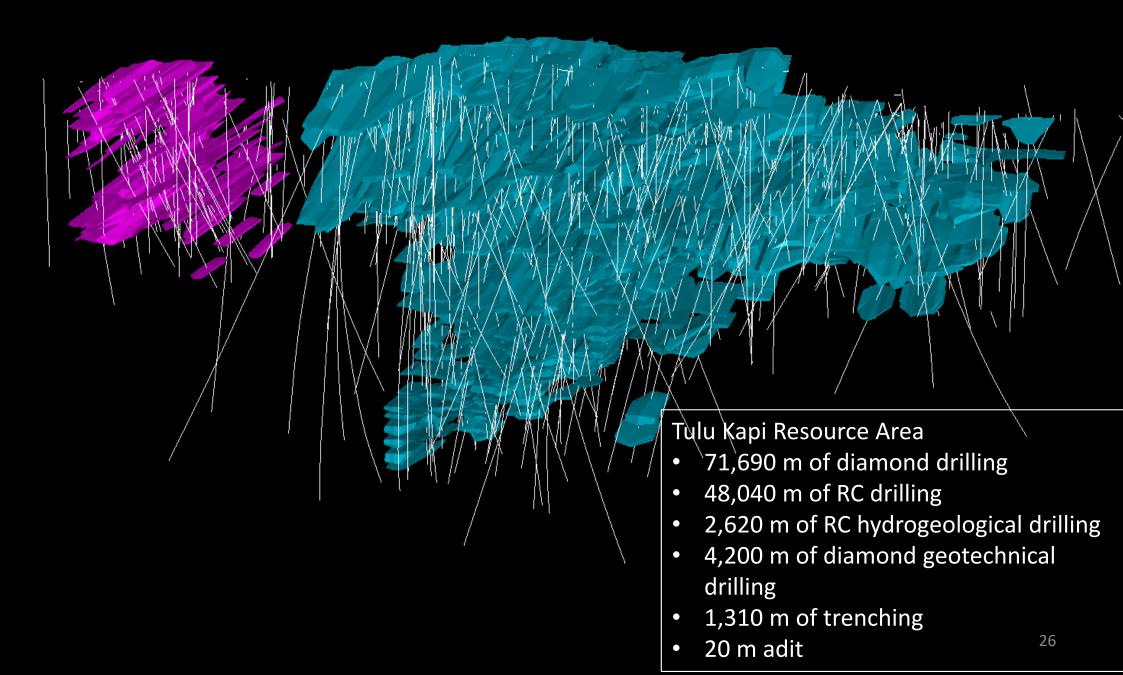
- Allows for compensation recipients to gather further information or to ask questions on financial, compensation and banking management
- Easily accessible and responsive on the local level immediately following payment distribution, external to the training sessions.



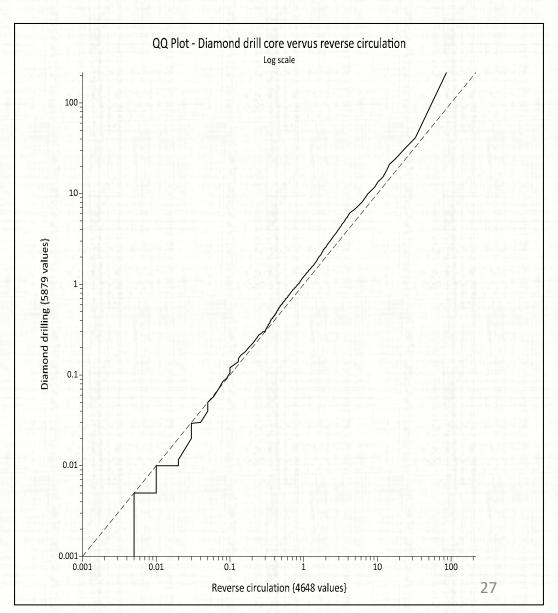

Mineral Resources Presentation Outline

- Overview
 - Deposit Geology
 - o Drilling
 - o Sampling
- Resource Modelling
 - March 2014 Due Diligence and Drilling Update Model
 - August 2014 Drilling Update
 - November 2014 Mineralisation Model
 - February 2015 Wireframe Estimate

Tulu Kapi *Overview Deposit Geology


- Moderately dipping to sub horizontal brittle structures host mineralisation
- Structures likely formed in a contractional environment with σ_1 in the E-W and σ_3 in the Z direction
- Reverse movement on the BSZ and sub horizontal extensional veining
- Steep lineations in the BSZ support this interpretation

- Mineralised structures generally terminate at the E diorite/syenite contact. However, some do continue into the E diorite
- Competency contrast between syenite and diorite; syenite is more brittle
- Structures pinch out to the west in the syenite


Tulu Kapi Overview: Drilling

Tulu Kapi Resource Drilling: Bias

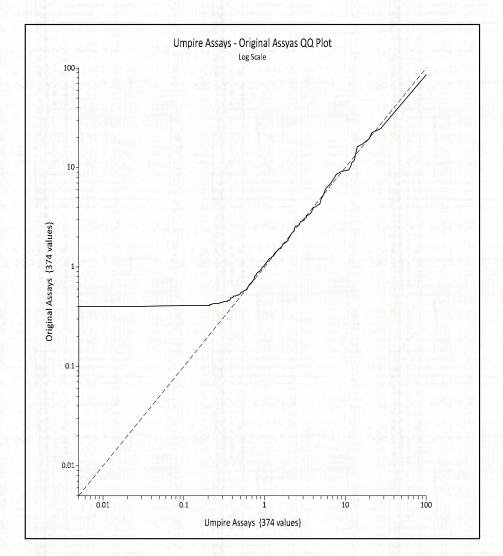
Samples from mineralised domains show no material bias between RC and diamond drilling.

Tulu Kapi Resource: Sampling

Tulu Kapi Resource Sample Preparation: On-site Laboratory

KEFI:

- Oven dry
- Crush to 70% passing 2 mm
- 200g sent for fire assay to ALS Independent Labs in Romania or Al Amri Jeddah



Tulu Kapi Resource Sampling: Umpire Laboratory

Pulp duplicates sent to SGS Perth. No systematic difference between laboratory results (ALS & SGS).

Statistic	Au (ALS)	Au (SGS)	% Difference	
Number of pairs	374	374		
Minimum	0.08	0.01	-87.5%	
Lower quartile	0.61	0.61	0.0%	
Median	1.12	1.06	-5.4%	
Mean	2.65	2.68	1.1%	
Upper quartile	2.21	2.21	0.0%	
Maximum	86.50	101.00	16.8%	
Coefficient of variation	2.21	2.44	10.4%	
Standard deviation	5.88	6.52	-6.1%	
Correlation coefficient	0.75			

Tulu Kapi Resource Resource Modelling

Year	Company	Project Status	Mineralized Model	Sample Selection	Estimation Method	Tonnes (Mt)	Grade	Metal (Moz) Og/t COG
2012	Nyota	DFS	Indicator NN DA	0.3 g/t bottom cut	DA, OK	24.9	2.3	1.9
2013- 14	KEFI	Due Diligence	Indicator NN DA	0.3 g/t bottom cut	DA, OK	24.1	2.6	2.0
2014	KEFI	Update	IK DA	MOD2XYZ, Manual Selection	DA, OK	26.7	2.3	2.0
2015	KEFI	DFS	Wireframes	Wireframe Domain	DA, OK	21.1	2.6	1.8

Tulu Kapi Mineral Resources

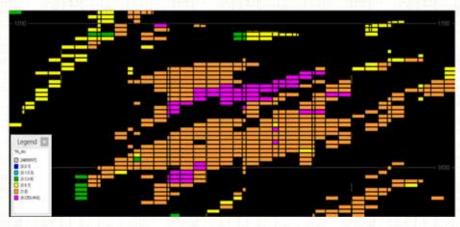
Mineral Resource totals 20.2 million tonnes at 2.65g/t gold, containing 1.72 million ounces:

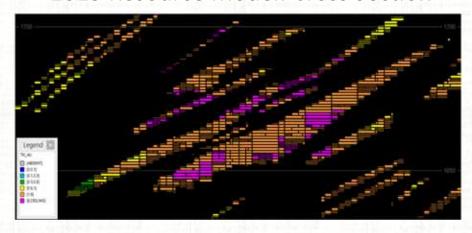
JORC (2012) Resource category	Reporting elevation	Cut-off (g/t gold)	Tonnes (Mt)	Gold (g/t)	Ounces (million)	
Indicated	Above 1400 RL	0.45	17.7	2.49	1.42	
Inferred	Above 1400 RL	0.45	1.28	2.05	0.08	
Indicated and Inferred	Above 1400 RL	0.45	19.0	2.46	1.50	
Indicated	Below 1400 RL		1.08	5.63	0.20	
Inferred	Below 1400 RL	2.50	0.12	6.25	0.02	
Indicated and Inferred	Below 1400 RL	2.50	1.20	5.69	0.22	
Total Indicated	All		18.8	2.67	1.62	
Total Inferred	All		1.40	2.40	0.10	
Total Indicated and Inferred	All		20.2	2.65	1.72	

Mineral Resources were split above and below the 1,400m RL to reasonably reflect the portions of the resource that may be mined via open pit and underground mining methods.

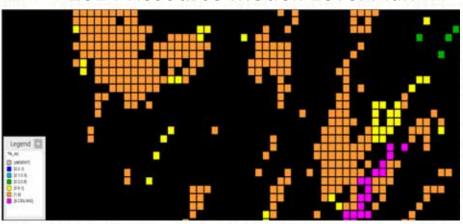
Ore Reserve and Mining Presentation Outline

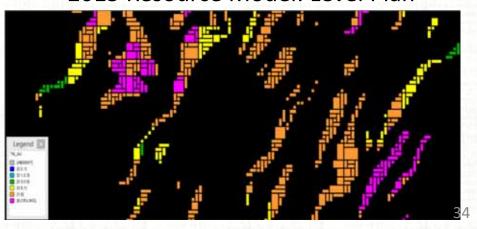
- Mine Geology
 - Resource Model
 - o Dilution
 - Grade Control
- Pit Optimization
 - o Geotech
 - Parameters
 - Ore Definition
 - o Results
- Design
 - Parameters
 - Construction
 - o Pit
 - Dumps (waste and stockpile)
 - Hydro-geology


- Mining Schedule
 - Constraints and Flow
 - Stage Sequence
 - Results
- Ore Reserve
- Mining Optimisation Study Contract Mining
 - Contract Mining
 - Increase blasthole diameter
 - Fragmentation analysis
 - Re-sequencing stage 1 pit
 - Reduction in AMS pre-production SOW
- Risks and Opportunities


Mine Geology: Resource Model

KEFI Resource model used wireframe solids resulting in a more constrained tonnage.


2014 Resource Model: Cross Section


2015 Resource Model: Cross Section

2014 Resource Model: Level Plan

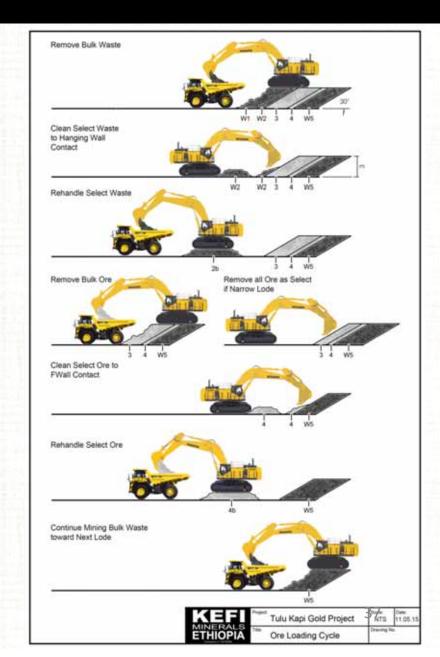
2015 Resource Model: Level Plan

Mine Geology: Dilution Factors

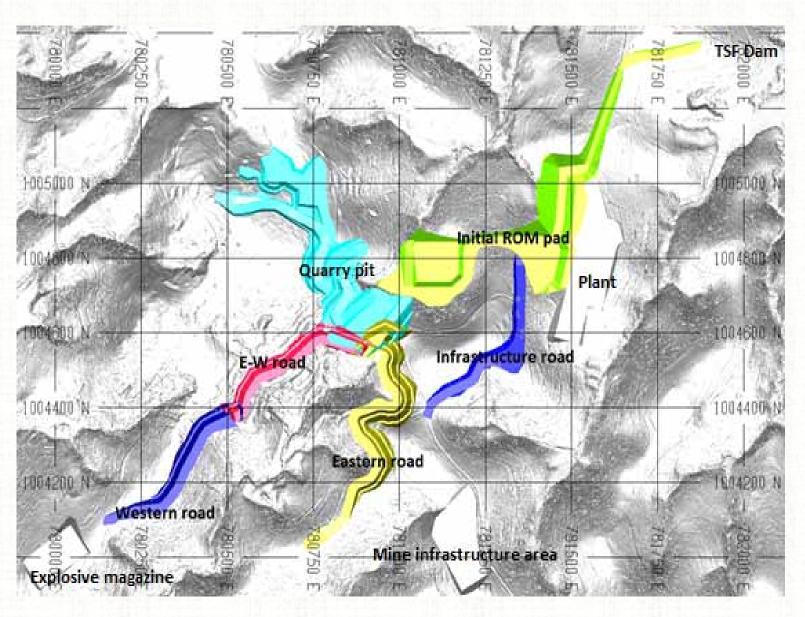
Factors effecting mine dilution and its optimisation:

- Operator experience
- Visual differential between ore and waste
- Grade control methods
- Ore thickness
- Blasting outcomes
- Bench size selection
- Flitch height selection
- Use of support machines to clear ore faces and isolate ore

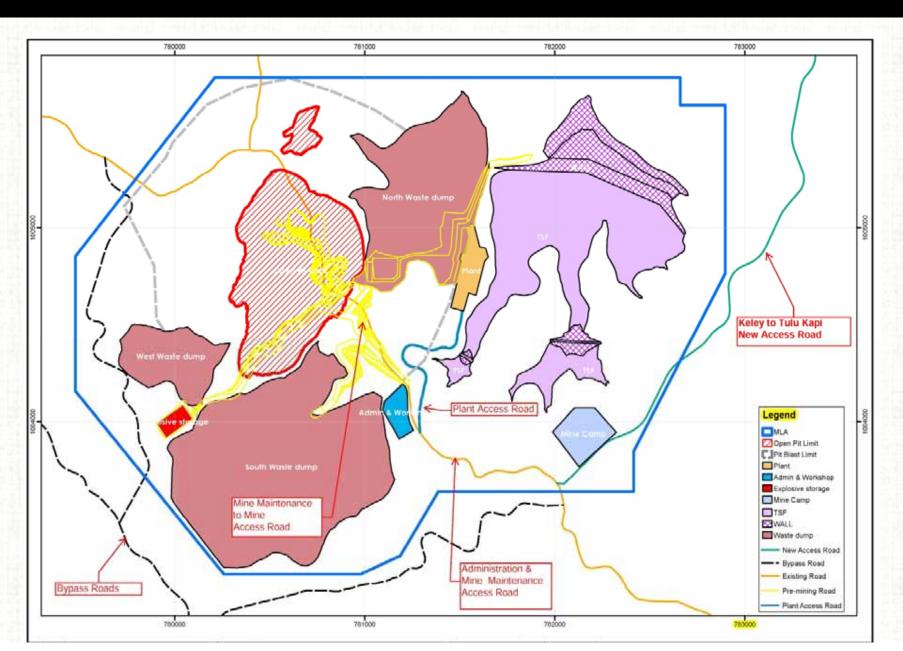
Mine Geology: Dilution Study Conclusions


- Snowden concluded the following from the thickness investigation:
 - That the mean vertical thickness was between 3.0 and 3.5 m
 - Half of the ounces are contained in lodes of greater than 3.5 m vertical thickness
 - 70% of the tonnes are found in lodes of vertical thickness 2.5 m high or greater
 - 50% of the tonnes are found in lodes of vertical thickness 3.5 m high or greater
 - 8% of the tonnes are in lodes of vertical thickness 7.5 m high or greater.
- This outcome considered in overall qualitative assessment of the level of dilution and bench height selection/blasting studies.

Mine Geology: Dilution Selective Mining


Selective mining process:

- Bulk waste removal; 200 t digger top loading
- Clean waste from hanging wall contact;
 120 t digger bottom loading
- Rehandling of selective waste; 120 t digger bottom loading
- Removal of bulk ore; 200 t digger top loading
- Cleaning of selective ore to the footwall contact; 120 t digger bottom loading
- Rehandling of select ore; 120 t digger bottom loading
- Continue mining waste


Design of Pre-Mining Construction

- Quarry waste rock for initial ROM pad and TSF dam
- Establish major road network and pit access:
 - E-W and W road to explosives magazine
 - Infrastructure road from ROM to mine infrastructure
 - Eastern road to the south dump
- 4.7 Mt quarried

Mine Design - Site Layout

Ore Reserves

JORC (2012) Reserve category	Cut-off (g/t Au)	Tonnes (Mt)	Au (g/t)	Ounces (Moz)
Probable – High grade	0.90	12.0	2.52	0.98
Probable – Low grade	0.50 to 0.90	3.3	0.73	0.08
Total		15.4	2.12	1.05

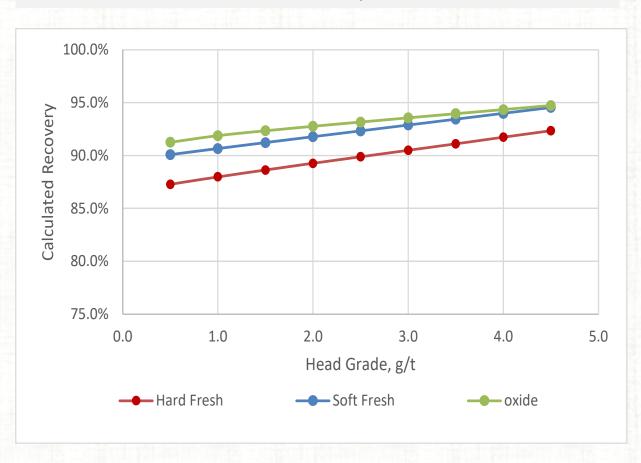
Mining - Risks and Opportunities

Waste dumping and haulage optimisation

- Following discussions with AMS, significant cost savings achieved by optimising the haul routes and dump locations.
- Significantly shorter hauls on benches which "daylight" on the existing topography, especially in the northern areas of the pit.
- Temporary haul roads could be established to shorten the haul to these dump locations.

Waste dump stability assessments

- o The waste dump stability assessments carried out in the DFS used the parameters derived from the site investigation of the northern dump area (i.e. RoM pad location). The analysis assumed the base of dump geotechnical conditions would be similar for the southern and south-western dumps.
- o Geotechnical assessments of the actual site conditions undertaken before dump construction


Open pit to underground transition study

 An open pit to underground transition study should be under taken to evaluate the most commercially efficient plan

PROCESSING PLANT - METALURGICAL TESTWORK

Grade-Recovery Curves

- Overall life-of-mine gold recoveries are estimated to be 91.5%
- Steady increase in recovery as the head grade increases
- Recovery declines as the ore becomes more competent
- Recoveries range from 85% for lowgrade hard fresh samples to 95% for high-grade oxide samples.

	% of Total Ore	Ore Reserves
Oxide ore	6%	0.7Mt
Fresh soft ore	66%	8.0Mt
Fresh hard ore	28%	4.3Mt

PROCESSING PLANT - METALURGICAL TESTWORK

Tulu Kapi gold is free milling and all the processes included in the CIL plant design are standard and common to many current gold operations

Oxide and Transitional ores	Medium hardness	
Fresh ore	Becomes harder with increasing depth	
All ore types	Amenable to gold extraction by conventio	nal cyanidation.
Leach dissolution of 97.4 %	For oxides at a grind size of P_{80} of 75 μm in	n a leach time of 24 h
Leach dissolution of 96.4 %	For deep hard fresh at a grind size of P ₈₀ o	f 75 μm in a leach time of 24 h
Recovery testwork	Showed that gravity separation did not sign recovery therefore ROM cyanidation was	,
Leach optimization	Showed the following optimum parame	eters:
testwork	Optimum grind	80 % passing 75 μm
	 Optimum cyanide concentration 	0.035 % NaCN.
	 Preg-robbers present 	therefore CIL circuit selected
	Residence time	24 h

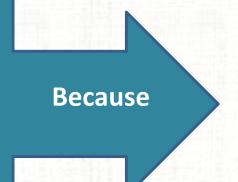
PROCESSING PLANT - COMMINUTION TESTWORK

Test	Unit or Type	Oxide Comp	Fresh Comp Lode1	Fresh Comp Lode2				
Abrasion Index	g	0.3139	03898	0.6522				
BRWi	kWh/t	11.3	12.2	19.7				
BBWi (106μm)	kWh/t	15.5	15.5	18				
JK Drop Weight	A× b	111.9	81.8	38.6				
JK Drop Weight	ta	1.07	0.72	0.29				
	Optimum grind		80%-75µm					
Leach Optimisation Testwork	Optimum cyanide addition	0.0	035% NaCN maintair	ned				
Leach Optimisation restwork	Preg robbers (Oxides)	1.75% therefore CIL circuit						
	Optimum residence time (hrs)		24					
Gold Dissolution	Oxide (%)	97.4						
Gold Dissolution	Deep Fresh (%)		96.4					
Cyanide consumption	Oxide (kg/t)		0.28					
Cyanide Consumption	Deep Fresh (kg/t)	0.13						
Overson Untoko	Oxides (mg/l/min)		0.018					
Oxygen Uptake	Fresh (mg/l/min)		0.008					
	Carbon loading -Oxides (g/t Au)		6864					
Carbon loading kinetics and equilibrium	Carbon loading - Fresh (g/t Au)		3502					
	Selected Process		INCO					
	Residual cyanide(CN _{WAD} -ppm)		1.7					
Cyanide Detox	Residence time (mins)	60						
	Reagent consumption (g SO ₂ / g WAD)		2.30					

PROCESS PLANT – CAPITAL COST ESTIMATE

Basis of Estimate (FEED Design & EPC proposal)

- Process plant design criteria
- General layouts of the process plant
- Process flow diagrams
- Process plant equipment list
- Piping and instrument diagrams
- Instrument lists
- Various discipline material take-off documents
- Electrical single line diagrams
- Quotations from vendors on major mechanical and/or process equipment
- Schedule


PROCESS PLANT - OPERATING COST ESTIMATE

Level of accuracy -10 % +15 %

Escalation factors not included

Developed for 3 ore types:

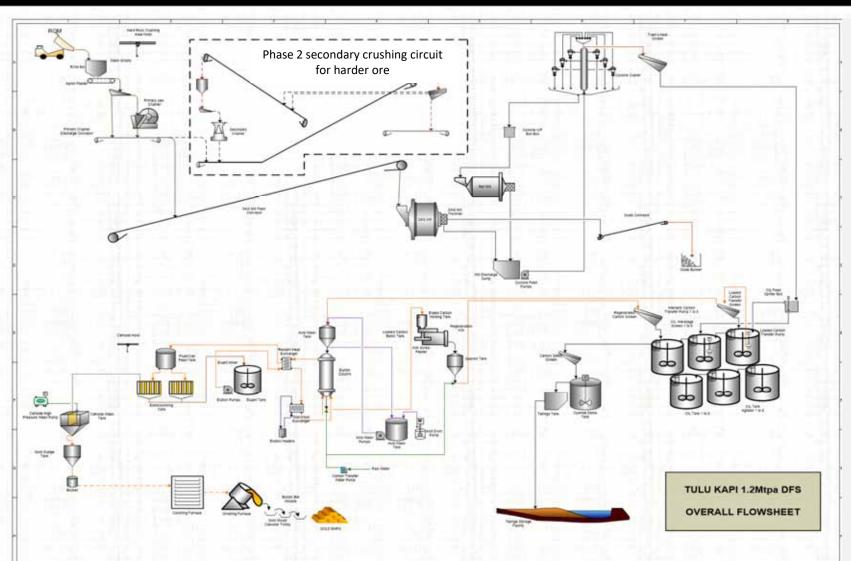
- Oxide/Saprolite
- Shallow Fresh
- Deep Hard Fresh

- Comminution characteristics
- Milling power requirements
- Reagents consumptions

All vary by ore type

PROCESS PLANT - OPERATING COST ESTIMATE (continued)

- Reagents and consumables
- Power
- Process plant operating and maintenance labour
- Maintenance, parts and supplies
- Assay laboratory
- Bullion refining and transport

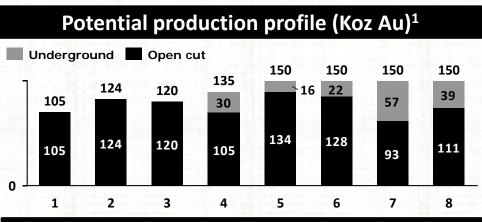

Main cost elements of the process plant

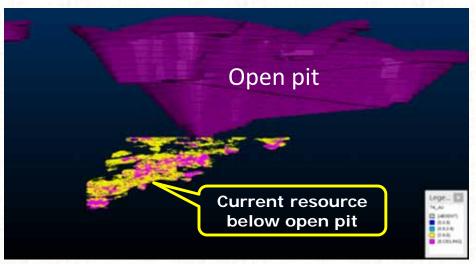
- First principles, where applicable
- Supplier quotations on reagents and consumables
- SENET's in-house database
- Client input

Basis of estimate

PROCESSING PLANT - FLOWSHEET

Sections:


- Crushing, stockpiling and reclaim
- Grinding and classification
- CIL plant
- Cyanide detoxification
- Tailings disposal
- Acid wash
- Elution
- Carbon regeneration
- Electrowinning (CIL) and smelting
- Water and air services
- Reagents

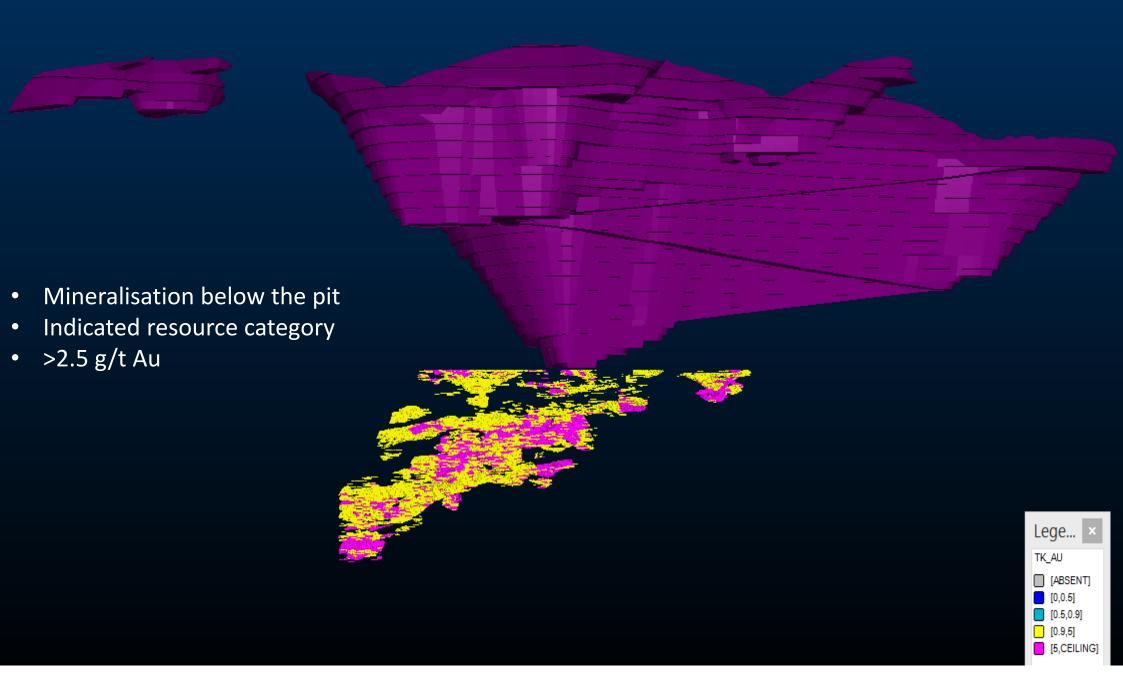

Further Potential - Tulu Kapi Deeps Underground mine would extend life and increase grade

The underground provides strong upside

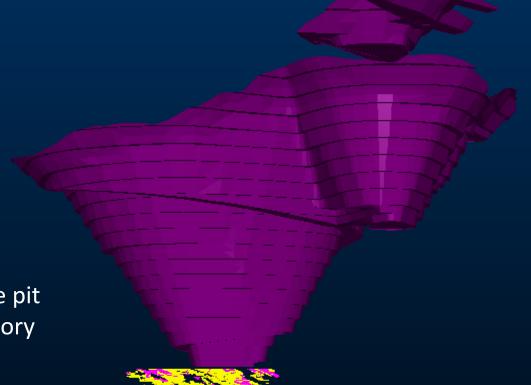
- Thick, high-grade gold zones below open pit
- Preliminary studies based on current resource only:
 - Open Pit + Underground production ≈ 150,000oz pa
 - Additional NPV_{8%} \approx \$23M (at \$1,200/oz)
 - Low AISC of c.\$845/oz for underground production
 - Mineable resource outside open pit is 1.3Mt @
 5.2g/t Au containing 220Koz
 - Gold mineralisation open at depth, along strike and down plunge
 - Gold grades higher & ore lenses thicker at depth
 - Gold mineralisation is expected to extend deeper and +800m further north
 - Potential to mine 1Moz below open pit

Current underground resource²

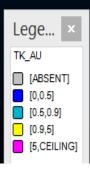
- 1) Production profile is indicative and based on preliminary studies only
- 2) Resource blocks below open pit: >1.5g/t Au (yellow) >5g/t Au (pink)



Tulu Kapi Deeps Mineral Resource


JORC (2012) Resource category	Reporting elevation	Cut-off (g/t Au)	Tonnes (Mt)	Au (g/t)	Ounces (million)
Indicated	Below 1400 RL	2.50	1.08	5.63	0.20
Inferred	Below 1400 RL	2.50	0.12	6.25	0.02
Indicated and Inferred	Below 1400 RL	2.50	1.20	5.69	0.22

The preliminary studies for the underground mine also considered the gold mineralisation below the base of planned open pit at a cut-off grade of greater than 2.5g/t gold, which is c. 1,450m RL (i.e. 50m higher than the 1,400m RL division for the above Mineral Resource Statement). It also considered economic lenses above 1,450m RL but outside of the planned open pit.


Tulu Kapi Deeps

Tulu Kapi Deeps

- Mineralisation below the pit
- Indicated resource category
- >2.5 g/t Au

210

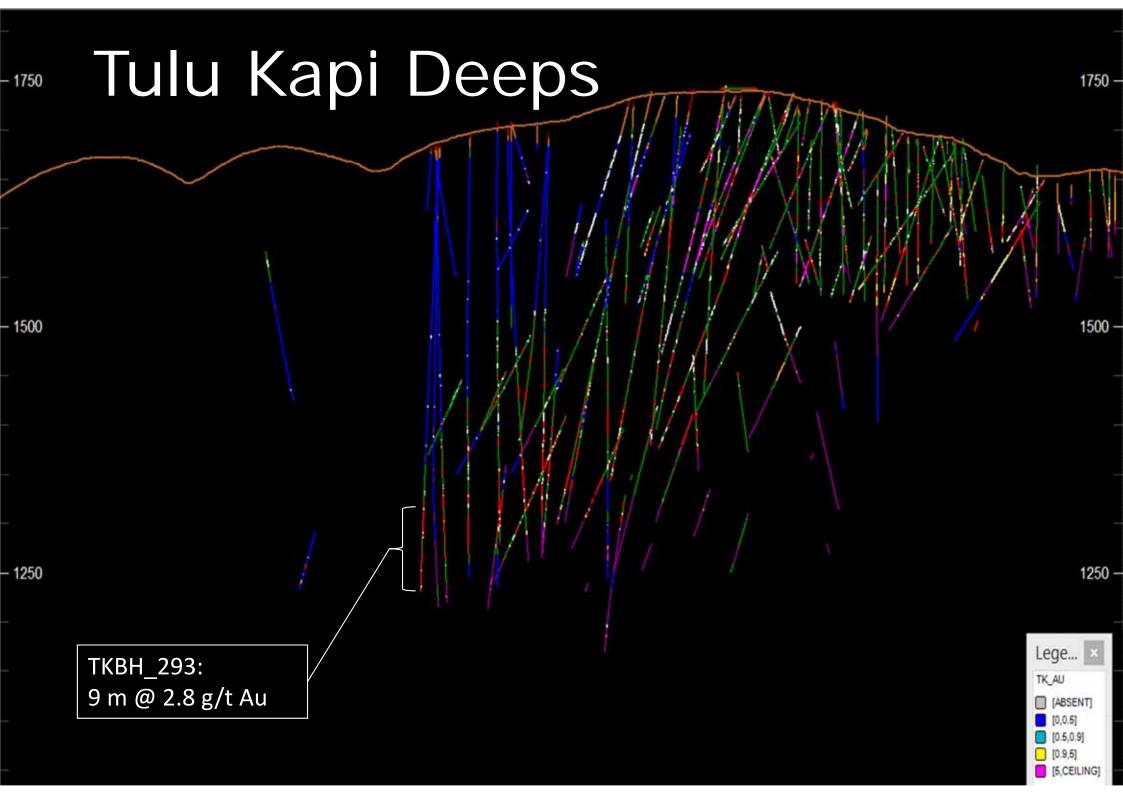
Tulu Kapi Deeps Mineralisation Style: Breccia

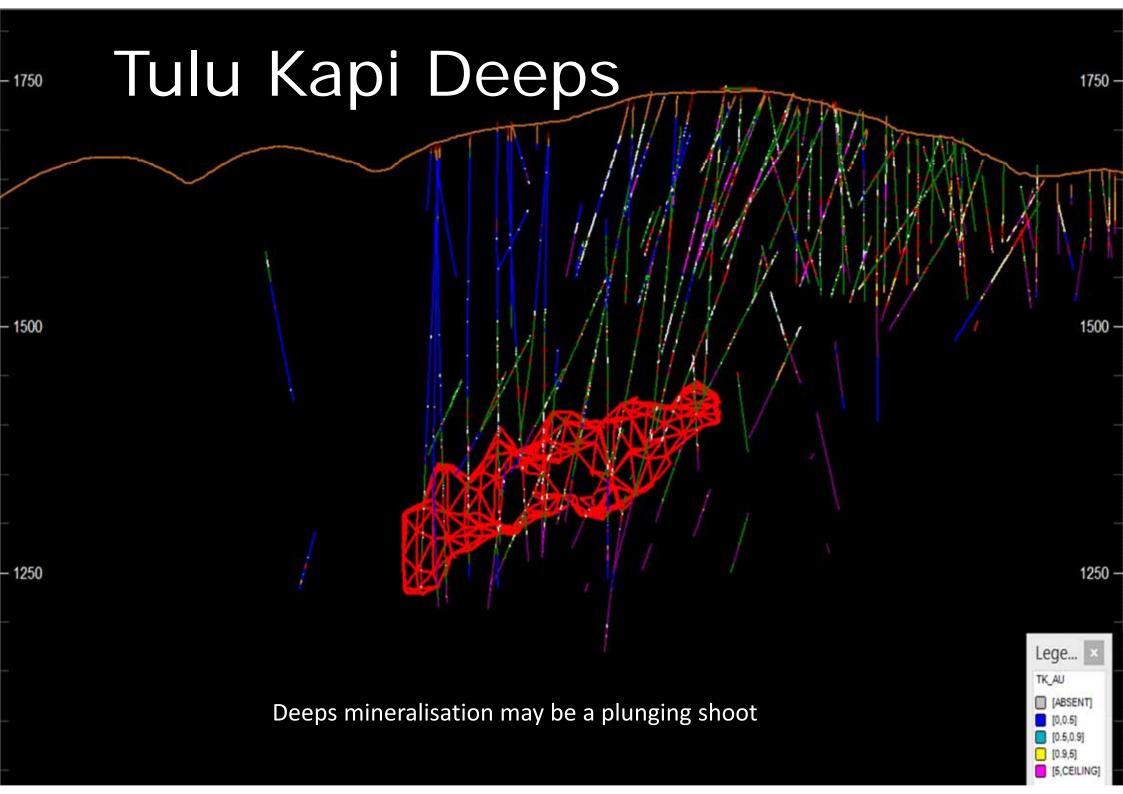
	BHID	AT	FRO M	то	Au	Ag	Rati o	As	Bi	Ca %	Cd	Cu	Fe	In	Мо	Pb	Sb	Se	Te	Zn
Г	TKBH_1	396.				7.0		62	0.9	2.1	5.9	28	15.	0.0		13	3.1	1.		125
	55	4	396	397	13.5	4	0.52	.5	9	1	1	5	9	4	2.7	30	7	3	0.13	0

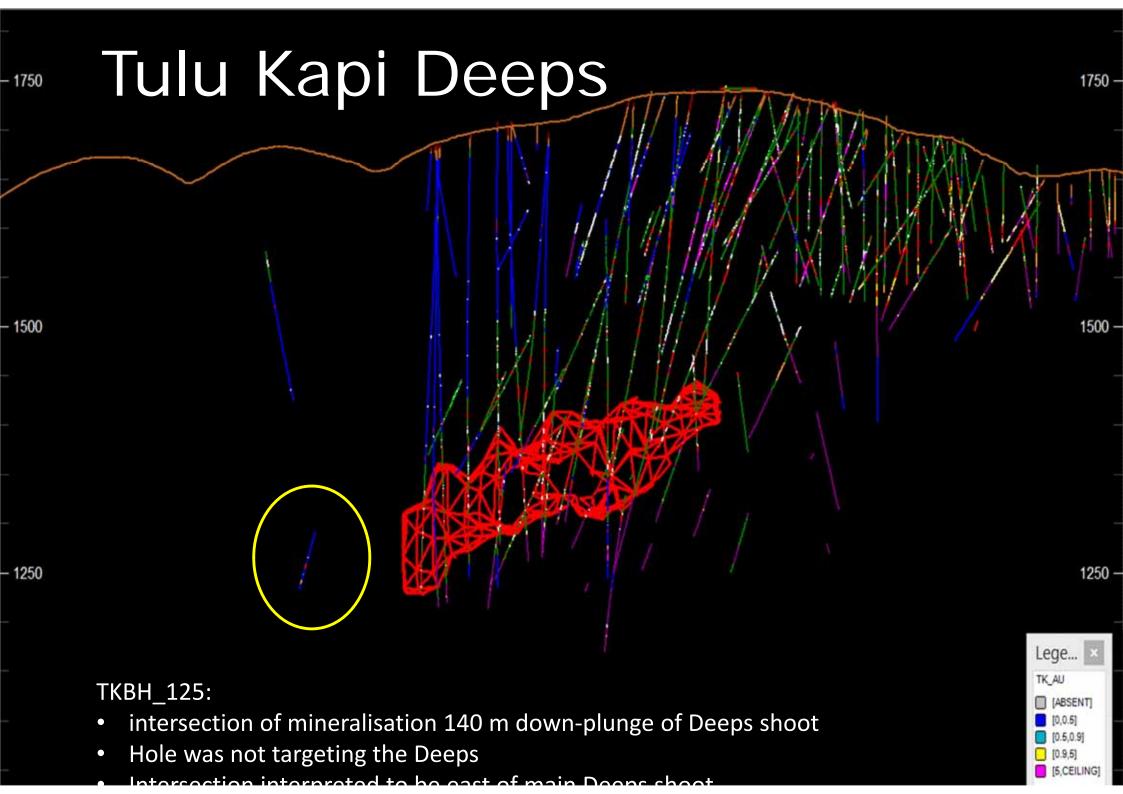
Tulu Kapi Deeps Mineralisation Style: Alteration

Chlorite-Sericite Alteration

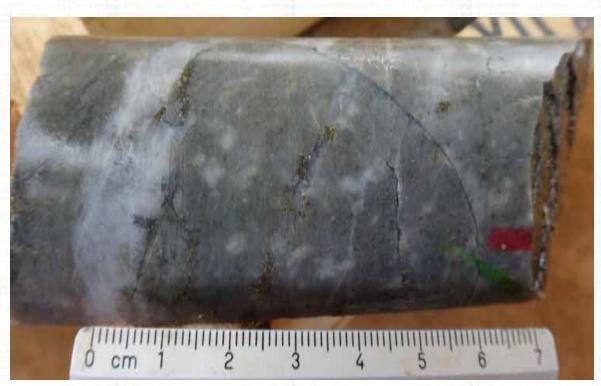
BHID	AT	FRO M	то	Au	Ag	Rati o	As	Bi	Ca %	Cd	Cu	Fe	In	Мо	Pb	Sb	Se	Te	Zn	
TKBH_1	413.	100	414.				9.	0.4	1.2	33.	10	5.9	0.2	0.3	21		1.		228	
14	1	413	4	13.4	15	1.12	6	1	6	8	8	4	2	8	30	3.9	1	0.1	0	




Tulu Kapi Deeps Mineralisation Style: Shallow



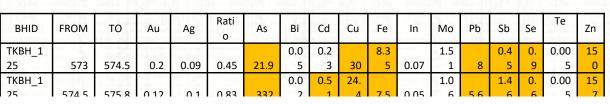
BHID	AT	FROM	ТО	Au	Ag	Ratio	As	Bi	Cd	Cu	Fe	In	Мо	Pb	Sb	Se	Те	Zn
TKBH_098		77.7	78.81	0.005					14.5					124				3
TKBH_098		78.81	79.8	0.46				1	5				1	1				171



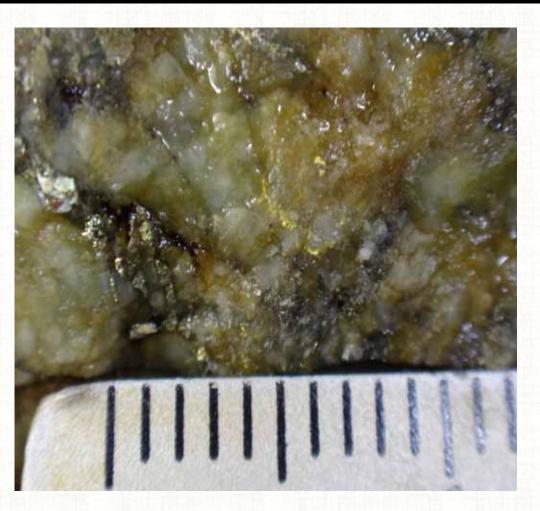
Tulu Kapi Deeps Northward Continuity: TKBH_125

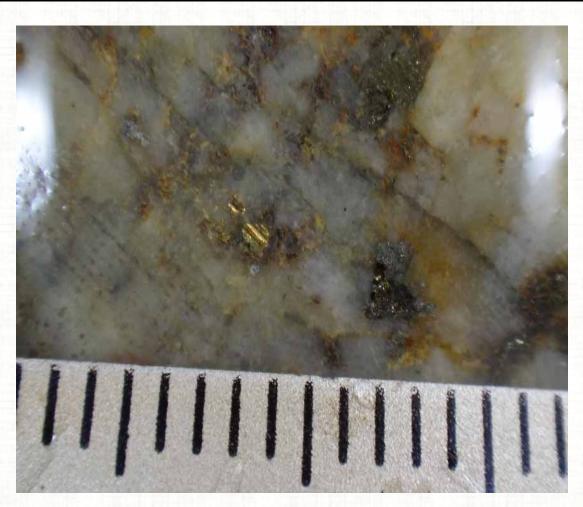
Mineralised altered dike

BHID	FROM	то	Au	Ag	Rati o	As	Bi	Cd	Cu	Fe	In	Мо	Pb	Sb	Se	Te	Zn
TKBH_1	563.6					1000	0.2	0.9	33.			2.8	17.	2.6	0.		10
25	5	564.4	2.45	0.53	0.22	0	4	1	6	2.9	0.04	9	5	4	3	0.03	7
TKBH_1							0.0	1.8	28.	1.8		0.8	18.	1.0	0.	0.00	21
25	564.4	565.4	0.13	0.1	0.77	1640	7	2	3	7	0.04	8	8	2	3	5	2
TKBH_1	- 77						0.0	0.2	24.	1.8				0.5	0.	0.00	
25	565.4	566.4	0.47	0.3	0.64	1020	9	2	1	9	0.01	1.3	6.1	4	2	5	42
TKBH_1		1000		-			0.0	0.1	83.		0.00	0.7		0.7	0.	0.00	
25	566.4	567.4	0.01	0.17	17	327	9	1	8	3.4	8	5	5.8	1	3	5	27

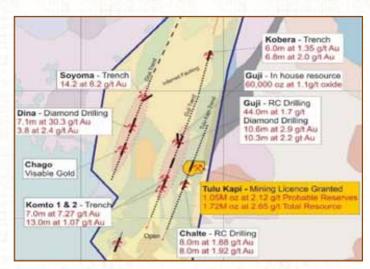


Tulu Kapi Deeps Northward Continuity: TKBH_125

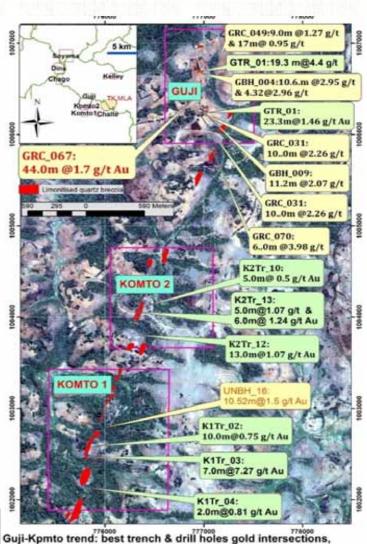

Mineralised deformed breccia



Tulu Kapi Deeps Coarse Gold

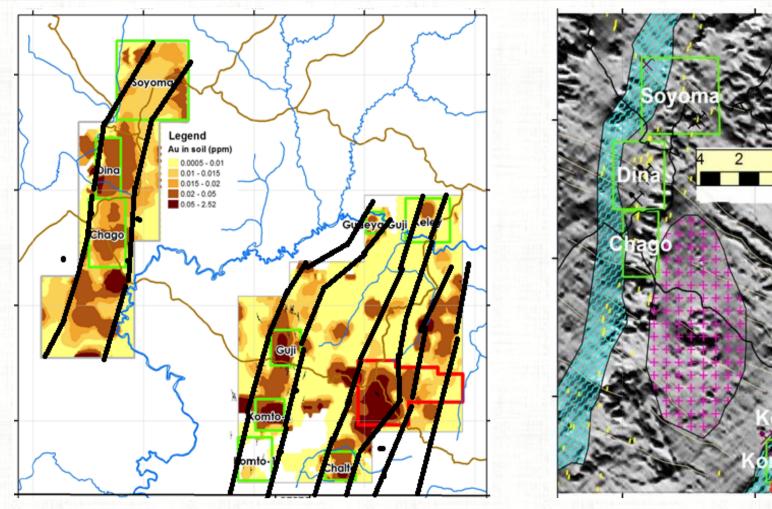

BHID	FROM	то	Au	Ag	As	Bi	Cd	Cu	Fe	In	M 0	Pb	Sb	Se	Те	Zn
TKBH_2		1				0.	0.	43	5.	0.0	1.	16	3.	0.	0.	
85	384.1	385	42	4.68	2.9	11	37	.1	92	1	04	.5	4	7	01	25

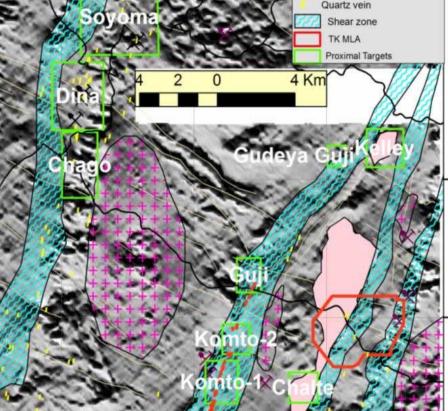
BHID	AT	FRO M	то	Au	Ag	As	Bi	Cd	Cu	Fe	In	Мо	Pb	Sb	Se	Te	Zn
TKBH_1	345	1			6.7	4.	0.1	19.	16	5.5	0.1	2.5	11	5.9	0.		
46	.8	345	346	23.1	9	7	3	3	4	6	1	6	80	5	8	0.09	866



Further Potential - Tulu Kapi Near-Mine Exploration Guji-Komto Belt

Stockwork quartz + FeOx mineralisation in meta-sediments at Komto 2


KEFI can quickly add to Tulu Kapi lowcost, open-pit gold production

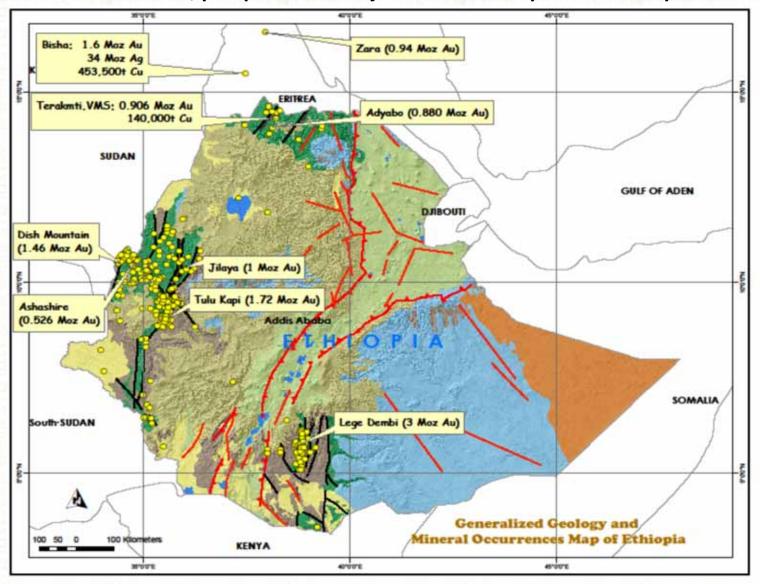

- Shallow gold resources within trucking distance of TK processing plant or as a stand-alone heap-leach operations
- Potential for 300-500Koz at 1.5g/t Au of oxides in a series of shallow open pits (40m depth) along the +9km long Komto-Guji Belt
- Initial heap leach operations could produce an additional 50Koz p.a. with low stripping ratios and high gold recoveries
- Low operating and capital costs as most infrastructure will be provided by the planned Tulu Kapi mine

Further Potential - Tulu Kapi Near-Mine Exploration Strong targets defined by geochemistry and geophysics

Geochemical surveys identify strong gold anomalies along major shear zones defined by geophysical surveys

Legend

Late to post tectonic granite


Syenite (Syn tectonic)

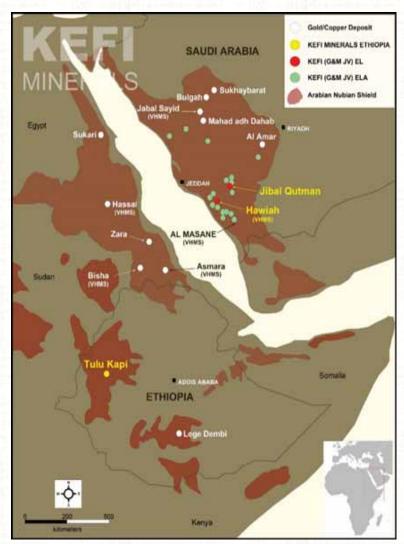
prrugnized_stock work

Early days for modern mining industry in Ethiopia - an emerging gold province

Artisanal mines, prospects and major Au and Cu deposits in Ethiopia

- Highly prospective limited modern exploration
- Lege Dembi is the only operating Au mine
- Dish Mountain and Ashashire represent an undeveloped +2Moz Au district
- East African's high-grade Au and Cu at Terakimti and Adyabo are at feasibility stage
- KEFI is targeting gold, basemetals and strategic metals throughout Ethiopia
- Strong support and investment from Ethiopian Government

Greatest value created from discovery and triggering development


• Ethiopia:

- Tulu Kapi underground +1Moz target at +5g/t Au below THE EXISTING 1Moz at +2g/t Au open-pit reserve. Target to lift production from the initial 115Koz p.a. Au to c.150Koz p.a. Au
- Tulu Kapi district targets for satellite Au deposits

Saudi Arabia:

- Infill and extension drilling to confirm development of Jibal Qutman resources for +30Koz pa Au from shallow open pits
- Jibal Qutman district targets for additional shallow ore
- Hawiah 6km-long zone: very large copper/gold target
- Current Tulu Kapi and Jibal Qutman resources indicate:
 - Aggregate 180,000oz p.a. gold production
 - Potential to increase production and/or extend mine life
- KEFI's large database and team's experience provides:
 - Large pipeline of applications
 - Other opportunities in the ANS

Location of KEFI's exploration portfolio in the ANS

Local community briefing at Tulu Kapi

Harry Anagnostaras-Adams, Executive Chairman John Leach, Finance Director

Cyprus - Group corporate team **Ethiopia** - Development and exploration teams **Saudi Arabia** - Exploration team

Email: info@kefi-minerals.com
Website: www.kefi-minerals.com

Luther Pendragon Ltd (Financial PR)
Harry Chathli, Claire Norbury, Ana Ribeiro
Tel: +44 (0) 20 7618 9100

Ethiopia - A country on the rise

15 years of 7-10% GDP growth, HQ for African Union, with a pro-development culture, provides UN peacekeepers Africa's fastest growing economy for region (2015 - 10.2% Real GDP growth)¹ Ranks ahead of Kenya, Mali, **Ethiopia** is Mozambique and South Africa Second most populous for Mining Investment country in sub-Saharan open for Attractiveness per Fraser Africa, ~100m people business Institute published 2016 Government is committed to Rapidly improving achieving economic development infrastructure and cheap through the Growth and electricity Transformation Plan (GTP) 1) IMF World Economic Outlook April 2016

COMPETENT PERSONS STATEMENT

The information in this presentation that relates to exploration results, Mineral Resources and Ore Reserves is based on information compiled by Mr Jeffrey Rayner. He was the Exploration Director of KEFI Minerals and a Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Rayner is a geologist with sufficient relevant experience for Group reporting to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("2012 JORC Code"). Mr Rayner consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

The exploration results, Mineral Resources and Ore Reserves disclosed in this presentation have been previously released as follows:

Date of Release	Project	Subject	Competent Persons	H. W.
22 April 2015	Tulu Kapi	Probable Ore Reserves	Frank Blanchfield	
			Sergio Di Giovanni	
4 February 2015	Tulu Kapi	Mineral Resource	Simon Cleghorn	no her
			Lynn Olssen	

KEFI confirms that it is not aware of any new information or data that materially affects the information in the above releases and that all material assumptions and technical parameters, underpinning the estimates continue to apply and have not materially changed. KEFI confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.